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LETTER TO THE EDITOR 
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School of Physics, University of Melbourne, Parkville 3052, Melbourne, Australia 

Received 5 October 1990 

Abstract. We use a simple generating function to calculate exactly the entropy 
of random quantum states for finite-dimensional Hilbert spaces over real, complex 
and quaternionic scalars. This allows us to extend our previous formula for the 
quantum correlation information of a state determination apparatus to include real 
and quaternionic von Neumann analysers. 

Calculation of the entropy of random quantum states is a problem of some topical 
importance given the recent appearance of such quantities in aspects of the theory of 
quantum chaos [l-51 and in the newly elaborated theory of quantum inference [6,7]. 
The required entropy is 

where $ and 4 are d-dimensional state vectors in a finite-dimensional Hilbert space 
over one of the three classical associative division algebras F = R,C or H of di- 
mension v E 1 , 2  or 4 respectively and a,@ E C with ReP > -v/2. The symbol 
dfiq denotes the unique, normalized, unitary invariant measure upon the pure state 
manifold of normalized state vectors $ and we have included a leading scaling by the 
dimension d for numerical convenience. 

There are now numerous published values for particular integrals of type (1) that 
have arisen in the literature of quantum cham [l-51. Methods are available to do an 
exact calculation [8,9] but the current literature concentrates upon H ( 1 , l )  and gives 
only the corresponding asymptotic results [1,2], special cases [3] or makes unneces- 
sary approximations [4,5]. Aside from its useful application in quantum chaos the 
quantity (1) is needed to calculate the quantum correlation information [6] of a state 
determination scheme. Indeed, knowledge of the more general result H ( P ,  P )  proves 
fundamental to calculations in the area of quantum inference so we feel it warrants a 
single exposition. 

Here we shall calculate (1) quite directly and exactly using a very simple generating 
function. A subsidiary result is then an elementary extension to real and quaternionic 
Hilbert spaces of the equations for quantum inference. In this way we arrive at  a new 
class of optimal state determination problems analogous to those discussed in [6,7]. 

The letter is organized as follows. First we discuss possible realizations of the 
invariant measure dfl - and introduce a simple method of calculation for a restricted 
class of integrands. d then identify an appropriate generating function and calculate 
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an exact expression for (1) and compare this with other results in the literature. 
Finally, we detail the connection with quantum inference. 

The most transparent realization of dfi, is offered by the following delta function 
prescription: 

with d $ d $ ~  nL=, T - ~ I ’  dxjk and N the appropriate normalization. For each 
choice of F the real variables x j k  define components of the state vector $ upon an 
orthonormal basis lj), j E [I ,  d] through the following family of relations: 

H :  u = 4  ($ I j) = rjl + ixj2 + jxjg + kxj4 

where i ,  j and k obey the standard quaternion algebra. 
That (2) supplies a unitary invariant measure is obvious for R and C .  That the 

suggestive generalization to H is indeed correct can be proved by showing that the 
Jacobian for a quaternionic unitary transformation is unity. That this is so is well 
known from early calculations of the volume of the classical groups and is indepen- 
dently verified in Adler’s work upon quaternionic quantum field theory [ll]. 

Here we adopt a simplified form of (2) that is appropriate for bilinear integrands 
F ( $ ,  4) possesing a scaling parameter P E R such that: 

where star denotes F conjugation and bar F-transpose conjugation. 
Demanding unitary invariance we find that 

This result follows immediately on expressing the right-hand side in polar coordinates. 
Notice that N ( P ,  U ,  d) is a purely geometric factor that depends only upon P and the 
choice of Hilbert space. 

Choosing F(+,G)  = ( & b ) P ,  the left-hand side of (7) is unity, and we find that 

This is readily verified for integral P and holds in general for R e p  > -ud/2  (only 
gamma functions are encountered). There is then a natural analytic continuation of 
the function H(a ,  P)  in /3 and ud to v d / 2 + P  # -1, -2 , .  . . with a possibly non-integral 
efleclive dimension f = ud. However, the physical meaning of this is unclear. 

Observe that 
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Then the required generating function is 

Making use of (7) and (8) it is then easy to show that: 

Substituting this result into (10) we find 

Noting that r'( z ) / r ( z )  = Q ( z ) ,  the digamma function, this expression readily reduces 
to the exact result 

Zyczkowski [4] and Wootters [5] have published approximate calculations of (1) 
based upon the Porter-Thomas result [lo] of random matrix theory. This says that 
for d large and $ uniformly distributed in Hilbert space, we have for the approximate 
distribution of components y 3 I ( $  I 4)12, a x2 density: 

where (y) = l/d. 
Zyczkowski [4] used this to obtain: 

H(1 , l )  - - d l m v l o g y P v ( y ) d y =  log(dv/2) - q ( v / 2 + 1 ) .  (15) 

Now, using r(z + 1) = zI '(z) ,  (13) reduces to an exact expression for Zyczkowski's 
integral (15): 

H(1 , l )  = * ( v d / 2  + 1) - q v / 2  + 1). (16) 

Taking d large and using the asymptotic result: \E(vd/2  + 1) - log(vdl2) + l/vd + 
O(l/d2), we find 

H(1 , l )  - log(vd/2) - q v / 2  + 1) + l / vd+  O(l/d2). 

So (15) indeed gives the correct asymptotics in the large-d limit. F'urthermore, the er- 
ror term 1/vd provides an interesting information theoretic measure of the convergence 
to asymptotic validity of the Porter-Thomas x2 approximation. 



L1250 Letter to the Editor 

Aside from H(1, l), Zyczkowski also calculates approximations to (13) and (11) 
for H ( P ,  p) and S(p) to  find: 

These compare quite well with our exact results upon making use of the large-d ap- 
proximation 

r ( ~ d / 2 ) / r ( ~ d p  + p) ( ~ d / 2 ) - 0 .  

Better asymptotics are possible, but we find it very interesting to note that the x 2  
approximation gets a number of terms in the exact formulae precisely. 

An exact version of (14) is also available [Q, 101. Other authors [l, 21 have used this 
to  obtain the correct asymptotics of H(1,l). Casati el  a1 [3] have previously given 
the true exact result for H(1,l) at  v = 1 (except q(1/2) should read *(3/2) in their 
paper). Also, in [7] we gave the exact result for H(1, n) at v = 2 via a very different 
route to  that pursued here. Although elementary, the full result (13) does not appear 
to  have been published before. 

In quantum chaos the entropy of a state appears as a measure of the dispersion 
generated in the evolution of the quantum analogues of classically chaotic systems. 
An entropy close to H(1, l), with v fixed by the appropriate universality class, is then 
a fair surmise for that of a typical snapshot state arising from the random behaviour 
of such a system in an ergodic-like region of phase space (particularly for large d ) .  

In quantum inference H(1,l) appears in a quite different way as an information 
bias we must remove in order to properly obtain the information gained about a priori 
unknown quantum states when we make succesive measurements upon an identical 
ensemble with a view to measuring the state. Wootters [SI has given a nice discussion 
of the subtleties of information theory in this regard. 

In previous articles [6,7] we gave a detailed exposition of the principles behind 
complex quantum inference. There is now no inherent difficulty in generalizing this 
work to  real and quaternionic Hilbert space (in particular, the non-commutativity of 
H does not enter). Following [6], we simply allow real or quaternionic projectors as 
data, rather than complex ones. The quantum invariant prior becomes the appropriate 
version of ( 2 )  and we may transcribe directly from [6] the same inversion equations: 

. N  

&=l 

thereby giving an inferred distribution for the measured state parametrized by the N 
observed eigenprojectors 0, = { Idk) (+kI}c‘l However, now Iq5&) E Rd, Cd or H d .  

Again following [6] we associate to any real, complex or qua.ternionic von Neumann 
analyser the quantum correlation information 

{$,ON} = - N  { * ( v d / 2 +  1) - * ( v / 2  + 1)) - CP(@N) logp(@N) .  
@N 
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Here, the only difference from the complex case is that we have replaced the quantity 
c d  of [SI) by its general cousin H(1,l)  evaluated for the F in question. Note further 
that the form given above makes plain the origin of Euler’s constant, 7, in [6] since 
1imd-- 9 ( d  + 1) - g(2) = log d - (1  - 7). Also we have the new crude bound: 

showing existence of three distinct classes of optimal state determination problems 
defined as the extremization of the entropy of p(cPN) with respect to the choice of N 
bases for Rd, Cd or H d .  F’urthermore, these three classes exhaust (in a foundational 
sense) the available finite-dimensional Hilbert spaces [12] and are each known to occur 
(in a purely algebraic sense) for quantum systems with appropriate Hamiltonian sym- 
metry [13]. Constraints upon knowledge of quantum states similar to those derived 
in [7] are indicated. These problems will be investigated thoroughly in a forthcoming 
paper [14]. 

I thank Bill Wootters for some very useful literature and for pointing out the relevance 
of some of my earlier results to current work upon informational aspects of quantum 
chaos. I also thank Andrew Davies for help with things quaternionic. 
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